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1 Introduction/Summary

Our group has developed an Al-powered system that acts as an autonomous cameraman. Using
computer vision algorithms and models, the system automatically adjusts camera zoom and focus
based on the positions and movements of players and referees or officials. This enables efficient and
high-quality game recordings without manual camera control with the aim of making it accessible
for different sports at various levels of play. Moreover, we have added post-game commentary as
well as Post game statistics to summarize the match.

2 Problem Statement and Target Audience

2.1 Problem Statement

In traditional sports recording, capturing high-quality footage often relies on skilled camera op-
erators who manually adjust zoom, focus, and framing to track fast-moving players and dynamic
in-game events. This manual approach is labor-intensive, costly, and prone to inconsistencies, par-
ticularly in lower-budget scenarios or for amateur sports. For sports at various levels of play, from
grassroots leagues to professional matches, there is a growing demand for affordable, efficient, and
reliable systems to produce professional-grade video content. Additionally, summarizing the match
through insightful statistics and post-game commentary is often limited to high-profile games, leav-
ing amateur and community-level sports with minimal or no coverage.

2.2 Target Audience

The system targets a broad spectrum of users, including:

1. Amateur and Semi-Professional Sports Teams: Enabling these groups to affordably document
matches for training, promotion, and review.

2. Sports Enthusiasts and Content Creators: Offering tools for fans and creators to produce
engaging and high-quality sports content.

3. Local Sports Organizations and Schools: Providing a cost-effective solution for capturing and
analyzing games for educational and strategic purposes.

4. Professional Sports Teams with Budget Constraints: Assisting lower-tier leagues or develop-
ment teams in achieving professional-grade recordings without a large crew.

5. Broadcasters and Event Organizers: Enhancing live streaming or post-event content produc-
tion with minimal resource investment.

By addressing these challenges, the autonomous cameraman system bridges the gap between high-
cost professional solutions and low-budget manual alternatives, democratizing access to quality
sports recording and analysis.



3 Solution

The proposed system automates camera operations for sports games using a multi-stage pipeline de-
signed to deliver professional-quality video output. The solution begins with robust object detection
and segmentation using the YOLOv11 model, followed by heatmap generation to identify regions
of interest. Temporal smoothing algorithms ensure stable tracking and zoom transitions, while
additional features like automated commentary generation, visual enhancements, and post-game
analysis provide an enriched viewing experience. This comprehensive approach not only ensures
smooth, high-quality footage but also offers actionable insights into game dynamics.

4 Pipeline and baseline results

The pipeline consists of five main stages that transform raw video input into smoothly tracked and
zoomed output footage. Each stage is carefully designed to ensure stable and professional-looking
results.
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Figure 1: Pipeline Flowchart

1. Object Detection and Segmentation The first stage employs the You Only Look Once
v11l (YOLOv11) model to generate bounding boxes for each tracked object per frame. This
provides,

Mi,t = YOLOV].].(F,;, Ol)

where M, ; is bounding box for object i at frame ¢, F} is the frame at time ¢, and O; represents
object 1.
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2. Heatmap Generation Binary masks are merged and processed using Gaussian blur opera-
tions:

H, = g(z My, 0,k)



where H; is the heatmap at time ¢, G is the Gaussian blur operator with standard deviation o
and kernel size k. Currently, we are blurring five times in our pipeline.

. Region of Interest Detection For each frame’s heatmap, the system:

(a) Identifies maximum intensity point (Zmax, Ymax)
(b) Extracts surrounding contour C

(¢) Computes centroid coordinates for camera targeting
Two example videos of this step can be seen here [2] and [3]

. Temporal Smoothing A 30-frame rolling buffer implements weighted averaging,
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where W; is the smoothed window size at time ¢, w; are window dimensions, and «; are
temporal weights. Two example videos of this step can be seen here [9] and [10]
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. Commentary Generation We utilized the OpenAI GPT-Vision model API for commentary
generation. The processed video was sub-sampled to include every 11th frame (i.e., the 1st
frame is shown, followed by skipping the next 10 frames, and so on). At a time, 5 frames were
passed to the model, and important events or highlights were appended to a list.

To make the process stateful, the context from the previous 5 frames was appended along with
the next set of frames and prompt. This iterative approach ensured continuity in generating
commentary.

Once the entire list was processed, it was summarized to highlight only the key events and
gameplay strategies. Finally, using an OpenAl text-to-speech model, the generated commen-
tary was converted to speech. This audio commentary was then added to the ” Commentary”
tab after post-processing the video.

. Visual Enhancement Optional visual filters, such as the Kuwahara filter, are applied to
enhance the final output’s aesthetic quality based on user preferences..

. Post Game analysis To analyze the game after its completion, we initially attempted to
cluster players by their jersey colors to determine team affiliations. However, this approach
required frequent adjustments to the color thresholds whenever jersey colors varied, resulting
in less accurate outcomes. To address this challenge, we introduced a manual color selection
feature in the dashboard (Figure 3), simplifying the process for this iteration. In future work,
we plan to explore automated methods to enhance player clustering and team identification.

Once the players are accurately divided into two teams, our interactive tab provides detailed
game insights[Figure 4], including:

(a) Team Identification and Clustering: Players are grouped according to their jersey
colors, enabling effective team tracking.

(b) Team Movement Visualization: Heatmaps, generated through Gaussian blurring,
visualize movement patterns over time.

(c) Ball Possession Analysis: We determine which team is closest to the ball through-
out the game and present the result as a percentage, offering insights into ball control
dynamics.

(d) Frame-Wise Movement Analysis: A scatter plot of the last 30 frames provides a
granular view of in-game actions and strategies.
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5 Iterative Experiments

5.1 Approach 1

Approach 1 represented our pipeline till midterm, where SAM was used to segment objects
and create masks for identifying areas of interest.

(a) Iteration 1:

e Approach: Identify the area of interest, then crop directly to that region and resize
the cropped frames to match the video dimensions.

e Shortcomings: Results in a jittery video, as even minor changes in the area of
interest trigger new cropping. Rapid shifts in the region lead to sudden changes in
the camera position, lacking a sense of smooth movement.

(b) Iteration 2:

e Approach: Build on Iteration 1 by adding a buffer to track past frame sizes and
camera positions. Smooth out zoom transitions to reduce jittery effects.

e Shortcomings: Improves stability but can result in excessive zoom if the area of
interest isn’t accurately defined. Over-zooming may crop out people or important
details.

(c) Iteration 3:

e Approach: Extend Iteration 1 and 2 by adding padding to prevent over-zooming.
Darken frame borders to guide viewers’ attention to the area of interest.

e Shortcomings: Border darkening remains experimental and currently appears as a
rigid frame around the image. Requires more natural transitions to avoid a distracting
“framed” look.

Two comparison videos comparing the original videos with the above iterations can be seen
here. [1] and [5] The pipeline was upgraded to utilize the YOLOv11 model, replacing SAM2,
which had performance limitations and required significant processing time.

5.2 Approach 2

In Approach 2, we assign weights to different actions and objects according to their priority and
then create a weighted heatmap. This heatmap is processed in the same way as in Approach
1; however, in this case, we can always identify the area of interest, regardless of whether
multiple people are present in the area of interest.

(a) Iteration 1:

Approach In this iteration, we used YOLO11 pose estimation model, and extract the
key points from the model to capture player movements accurately. Further an annotated
datasets from the Spacejam GitHub repository was used, featuring cropped player clips
with joint coordinates marked for the specific action each player was performing. Using
these annotated clips, we trained an XGBoost model to classify actions based on the
labeled joint coordinates. Pose estimation sample results can be seen in figure 6, and a
detailed overview of the model pipeline can be seen in Figure 5.


https://docs.ultralytics.com/tasks/pose/
https://github.com/simonefrancia/SpaceJam
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Figure 5: Model Pipeline

Shortcomings

A few challenges emerged with this approach. Since the XGBoost model was trained on
individual frames, therefore it lacked temporal understanding of the joints, causing labels
to switch abruptly between frames. This approach was unsuitable because we plan to
give weights to each action, so that the area of interest can be determined. However,
abrupt switching of labels across frames would result in unstable weight updates, as
the model struggles to recognize patterns that unfold over time. Without a sequence-
aware mechanism, the model’s action predictions often lack consistency, impacting overall
accuracy. Priority Table for weighing the actions can be found below in Table 1:

Table 1: Priority of Basketball Actions

Priority | Basketball Action
1 Shoot

Dribble

Block/Pick/Pass

Defense

Ball in Hand

Run

Walk

No Action Figure 6: Multi-Person Pose Estimation
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(b) Iteration 2:
Approach Seeing the need for a model that takes into account temporal movement, we
planned to utilize a 3D Convolution Neural Network model for action detection task. The
model we used was pretrained on the Sportslm dataset, a large-scale dataset specifically
geared toward sports activities. We attempted to fine-tune this model on the SpaceJAM
dataset to better cater to our needs. The details of the fine-tuning process and the model
architecture used are outlined below:

e (Categorical Cross Entropy as the loss function
e Trained for 20 epochs

e Adam optimizer with a learning rate of 10~
e Batch size: 8

We divided the dataset to prevent class imbalance, ensuring that each class contained 200
videos, resulting in a total of 2000 videos used for fine-tuning.


https://code.google.com/archive/p/sports-1m-dataset/
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Figure 7: Fine Tuning 3D CNN
Shortcomings

This approach presented several challenges. First, due to limited native support for the
specific pre-trained model we used, we had to implement significant portions of the fine-
tuning and data handling code from scratch, which proved time-intensive. While many
pre-trained models and datasets exist for action recognition, we chose SPORTSIM for
its sports-specific focus, which seemed to best align with our goals. However, this choice
increased development time. Due to bugs and issues in the pipeline that we are currently
debugging, the model was not fine-tuned correctly, ultimately performing at a random
sampling level with only 10% accuracy.

Having identified the difficulties in fine-tuning a model without native support, we are
now considering alternatives that might streamline the process, such as exploring other
3D CNN models with easier fine-tuning and integration options. In particular, MMAc-
tion2 from the OpenMMLab ecosystem appears promising. It provides flexible 3D CNN
architectures with extensive support for action recognition tasks, and we plan to explore
this in our upcoming iteration.

Iteration 3:

Approach

We simplified the approach by focusing on ball and player detection using a fine-tuned
YOLOv11 model for basketball detection(the fine-tuning details will be discussed in the
upcoming section) and a regular YOLOv11 model for player detection. In this setup, the
ball is assigned a higher weight while players are given a relatively lower weight. This
allowed us to create a pipeline to generate a weighted binary mask, which, when merged
across frames, enables us to identify the point of maximum intensity within the frame.
Along with the fine-tuned model for basketball detection, we incorporated a CSRT track-
ing algorithm. Once the basketball is initially detected, the tracker keeps following it
for up to 30 frames or until the next detection, whichever occurs first. This approach
effectively tracks the basketball whenever it is in the frame. A video representation of
basketball tracking and player detection can be found here [7] and [8]. Sample images
showing the results are displayed below:

Fine-Tuning Details: We initiated our fine-tuning process using the YOLOv11 medium
model (yolovll.m) and employed a labeled basketball dataset from Roboflow, which in-
cludes two classes: ‘basketball’” and ‘made basket’. The fine-tuning was conducted on
Kaggle using two T4 GPUs with the following parameters:

e Epochs: 100
e Image Size: 640
e Batch Size: 16


https://mmaction2.readthedocs.io/en/latest/get_started/overview.html
https://mmaction2.readthedocs.io/en/latest/get_started/overview.html
https://github.com/brettfazio/CVBallTracking
https://github.com/brettfazio/CVBallTracking
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Figure 8: Results from the First Iteration

However, we observed that due to the small size of the basketball, the model frequently
missed detecting the object. To address this issue, we conducted a second iteration of
fine-tuning with an increased image size:

e Epochs: 100

e Image Size: 1280

e Batch Size: 4
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Figure 9: Results from the Second Iteration

Based on the improved performance observed with the higher image size, we decided to
proceed with this configuration for subsequent applications.
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Figure 10: Comparison of Basketball and Player Detection

Future Plans

We plan to use a classification model to identify the court (area of interest) with a binary
mask, so that all object detection and masking focus on the relevant area, ensuring that the
audience or objects outside the court do not interfere with the model’s performance.



In future iterations, selecting the top-k regions could enhance precision and allow for a split-
screen feature. Finally, the area of interest would be cropped, resized to match the video frame
dimensions, and converted back into a video format.

6 Timeline, Milestones and Duties

Following our experiments, this was the timeline and milestones we followed and achieved, as
snapshots from our GitHub project [6].
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6.1 Milestones Achieved

Integration of SAM2 and YOLO Frameworks
Implementation of Basic Zooming Algorithm (Approach 1)

Parallel Development of Approach 2

Potential Ensemble of Approaches

6.2 Future Milestones

Weighted Object Detection and Refinement

User Interface Development

3D Convolutional Network Integration

Iterative Testing and Debugging



6.3 Team Responsibilities

Outlined below are the specific duties assigned to each team member:

(a)
(b)

(c)

7

Akshat Kaushal — Responsible for documentation and experimentation, with a focus
on refining the Zooming Algorithm and approach 2.

Vedant Zope — Handles documentation and experimentation, with a focus on formulat-
ing approaches for Object Detection, tracking and model training/fine-tuning in Approach
2.

Umang Sharma — In charge of documentation, integration, and experimentation, fo-
cusing on SAM2, as well as Ul enhancements related to brightness adjustments and
clustering.

Future Improvements

The planned improvements are categorized into four main areas to enhance processing effi-
ciency, visual quality, detection accuracy, and user interface features:

(a)

Player Action Detection

Approach 2 [Iteration 1/2] appears promising for fast and accurate AOI (Area of Inter-
est) detection. However, due to various reasons, it has not been functioning correctly.
If given more time, we would focus on refining this approach to gain a clearer under-
standing of the players’ actions. This improvement would likely enhance Al-generated
summaries/commentaries and enable more precise post-game analysis and AOI detection.
Additionally, we plan to integrate social engineering to incorporate the vision direction
and further refine our AOI detection based on observed interactions.

Optimizations

The current SAM2 processing pipeline operates sequentially for each object, which in-
creases processing time due to memory constraints. To address this, we are investigating
alternative models, such as Approach 2 Iteration 3, which may allow for parallel process-
ing, thereby reducing latency and improving overall efficiency.

Visual Enhancements

Enhancing the visual clarity and quality within our pipeline is essential to improve the
viewer’s experience. The purpose of zooming is to direct the viewer’s focus, especially in
low-resolution videos, where additional cues such as lighting, highlighting, and smooth
zoom transitions can greatly improve visibility. Currently, these enhancements are not
automated; however, we aim to dynamically apply them when basic zooming alone may
detract from the viewing experience.

Enhanced Area of Interest Detection
To improve focus on key areas within the frame, we are exploring weighted object de-
tection using Approach 2 Iterations 1 and 2. By assigning weights to detected objects,
we can dynamically identify and emphasize regions of highest relevance, ensuring viewers
can easily follow key elements in the scene.

User Interface Enhancements

At present, the system focuses on a single area of interest. However, events may feature
multiple simultaneous areas of high importance. To address this, we are exploring options
for split-screen viewing, which would allow multiple areas of interest to be displayed
concurrently, offering viewers a comprehensive view of the action.

10



8 Reflections

This project was a real, hands-on journey that taught us the value of trying out different
ideas and knowing when to move on from those that aren’t working. We explored a range of
methods—such as SAM2, 3D CNNs, and pose estimation-based action recognition—and found
that breaking a complex, real-world challenge into smaller, manageable tasks made it far more
approachable.

In working through these approaches, we learned to anticipate potential issues and to keep
refining our strategies until we found something robust and reliable. Our research was in-
strumental in guiding us toward valuable insights and techniques that we could adapt to our
needs.

Most importantly, this project highlighted the benefits of teamwork. Collaborating with others
not only made the process more efficient but also more enjoyable. The blend of experimen-
tation, careful planning, and close cooperation is what ultimately made this experience both
challenging and deeply rewarding.

9 Appendix

The complete project code is available in the following GitHub repository, which also includes
a descriptive README with instructions for running the code (recommended if you plan to
test/run the setup):

[6] https://github.com/VedantZope/CIS-5810---Auto-Zooming-Cameraman

A zipped version of the code is also available for download at the following Google Drive link:
https://drive.google.com/file/d/1A_AtahfyKrXuM-1MPZxYY45xNQMfTpv8/view?usp=sharing
A demo of the project can be viewed here:

[1] https://drive.google.com/file/d/1QUrT-I1za9JNBWBlaq41TLUGBiWdjsHOc/view?usp=
sharing
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